
DOCUMENT RESUME

ED 027 743 EM 007 134

By-Fasana, Paul J., Ed.; Shank, Russell, Ed.
Tutorial on Generalized Programming Language s and Systems. Instructor Edition.
American Society for Information Science, Washington, D.C.
Spons Agency-National Science Foundation, Washington, D.C.
Pub Date Jul 68
Grant- F -NSF -GN -657
Note-65p.; Manual based on materials prepared and presented by Thomas K. Burgess and others at the
Annual Convention of the American Society for Information Science (New York, October 22-26, 1967)

EDRS Price MF-$0.50 HC-$3.35
Descriptors-*Computer Science, *Computer Science Education, Information Retrieval, Information Storage,
*Manuals

Identifiers-COBOL, FORTRAN, PL I, SNOBOL
This instructor's manual is a comparative analysis and review of the various

computer programing languages currently available and their capabilities for
performing text manipulation, information storage, and data retrieval tasks. Based on
materials presented at the 1967 Convention of the American Society for Information
Science, the manual describes FORTRAN, a language designed primarily for
mathematical computation; SNOBOL, a list-processing language designed for
information retrieval application; COBOL, a business oriented language; and PL/L a
new language incorporating many of the desirable features of FORTRAN and COBOL
but as yet implemented only for the IBM 360 computer system. (TI)

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE

OFFICE OF EDUCATION

Pek

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

N. PERSON OR ORGANIZATION ORIGINATING IT. POINTS Of VIEW OR OPINIONS

rJ STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

TUTORIAL ON POSITION OR POLICY.

GENERALIZED PROGRAMMING
LANGUAGES AND SYSTEMS

Instructor Edition.

Edited by
Paul J. Fasana
Columbia University Libraries
New York, N. Y.
and
Russell Shank
The Smithsonian Institution
Washington, D. C.

Based on materials prepared and presented

at the 1967 ASIS Annual Convention

Principal Tutor: Thomas K. Burgess

Partially supported by a grant from the

National Science Foundation (GN-657)

Tutorial Subcommittee
Conference Program Committee
American Society for Information Science

(formerly American Documentation Institute)

Annual Convention (1967)

New York, 1968

ADI Tutorial Manuals

PREFACE

A prime responsibility of a professional society is to foster

continuing education activities covering new developments in topics

of importance to the work of its members. This is particularly true

in rapidly expanding and highly complex technologies such as those in

the field of information science.

With this view, the 1967 Conference Planning Committee of the

American Documentation Institute (now the American Society for Informa-

tion Science) chaired by Paul Fasana of the Columbia University Libraries,

established a Tutorial Subcommittee to organize training sessions for

presentation at the Conference. The Subcommittee, under the direction

of Russell Shank, then Associate Professor at the Columbia University

School of Library Service, agreed to develop three workshop tutorials

for the following areas: elements of information systems; electronic data

processing concepts; and generalized programming languages and systems.

The tutorials on these topics ran concurrently. Ehch began with

a general session in which the tutorial leader gave an overview of the

topic to be covered. The participants were then formed into smaller work-

shop or seminar groups for detailed instruction by a team of tutors.

Each tutorial lasted the entire day. The general sessions were limited

to about 100 people; seminar groups were limited to about 25 people.

In the seminar groups each of the tutors either covered the entire topic

simultaneously, or presented a part of the information to be covered,

repeating their presentations as groups were rotated among them.

In planning the tutorials it was apparent that syllabi or work-

books were needed to assure that the basic information to be presented

was uniform and organized for the instructors of each of the groups. It

was assumed that if syllabi were carefully prepared they could be made

generally available and be useful in similar courses at other national

and local meetings of information science graaps.

Three manuals, covering the three different topics, were prepared and

used experimentally at the Conference. Initially, it was hoped that each

manual would contain a comprehensive outline of the topics to be pre-

sented, a display of the illustrations and visual material used in the

lectures, glossaries, bibliographies, and problems. It was further assumed

that the sessions would be more meaningful if an instructor's version and

a student's outline (with sufficient space for notes) were prepared. The

instructor's edition would have enough detailed information to allow other

instructors to present the course.

The variation among the approaches to the three topics treated in the

tutorials made it difficult to attain this objective of uniformity in style

of presentation, at least on the first attempt. All three manuals have

been extensively revised for publication. This material will undoubtedly

be improved through refinements as the tutorials are presented elsewhere

in the future.

This package contains both an instructor's and a student's version of

the syllabus for each topic. Undoubtedly other instructors will wish to

make modifications of these manuals to suit local needs and instructor's

talents. These manuals are offered, therefore, primarily as examples for

for those who might be planning similar tutorials. The student

edition may be produced in quantity locally as required.

Very briefly, the scope of each of the three sessions of the 1967

tutorials was as follows:

Tutorial I. Elements of Information Systems.,

Paul L. St. Pierre, Principal Tutor

An introductory course for those with no previous experience or

formal training in systems analysis. Objective will be to familiar-

ize participants with the techniques (file analysis, record analysis,

flaw-charting, costing) and the terminology of systems analysis.

Those who complete this tutorial should have a knawledge of what

systems analysis is, what function it serves and how it can be applied.

Tutorial II. Electronic Data Processing Concepts.

Bruce Stewart, Principal Tutor

For those with little or no experience with EDP equipment. Emphasis

will be on a functianal description of various types of equipment.

Participants will be given an understanding of how such equipaent works.

They- will not be trained to operate particular machines.

Tutorial III. Generalized Programming Languages and Systems.

Thomas K. Burgess, Principal Tutor

For those with considerable systems analysis and programming experience.

Presentation of a comparative analysis and review of the various pro-

gramming languages currently available, especially as they apply to

information storage and retrieval. The relative merits of different

program languages for use in textual analysis, file structure, file

manipulation, and similar topics will be stressed. Program languages

to be covered include FORTRAN, COBOL, PL 1, SNOBOL, and ALGOL.

-iv-

Russell Shank
Washington, D.C.
July, 1968

TABIE OF CONTENTS

Introduction

FORTRAN

SNOBOL

SNOBOL, Alvendix I

COBOL...,

PL/1

Bibliography:

Bibliography:

Bibliography:

Bibliography:

3.

5

12

20

22

28

FORTRAN 4o

SNOBOL 41

COBOL 43

PL/1 44

TABLE OF FIGURES

Character Manipulation follows p. 9

Character (4nd Bit) Isolation.., follows p. 10

Character (and Bit) Replacement follows p. 10

Slip List 4 follows p. 11

Example of Procedure Blocks p. 30

Desirable PL/1 I-11 System FeaturPs follows p. 30

Arithmetic Capability follows p. 33

Text Manipulation.., follows p. 34

Example 1 follows p. 34

Dynamic Storage Allocation follows p. 36

Example 3 follows p. 37

-vi-

Generalized
Programmiu_kalues_f_taailys t ems

A Review of Programming Languages with Reference to Information Storage

and Retrieval

Introduction

As the title implies, this manual is designed to discuss higher

level programming languages and their capabilities for performing

text manipulation and data retrieval tasks. It assumes that the

student has some knowledge and experience with a programming language

and with information retrieval activities. It is not necessary for

the student to be familiar with all the languages discussed, but he

should have a working knowledge of at least one higher level language.

It vas difficult for the authors to reduce the amount of information

available on each of these languages to a useful amount of information

which could be presented in a short period of time. Therefore, we

have had to limit our discussions to talking about the particular

structures of the various languages useful for IR activities. No

attempt is made to teach programming in any of these languages, this

can be accomplished through the use of the bibliography and self-study

on the part of the student.

-1-

Separate consideration of the languages provides an examination

of the pros and cons of each. Rbwever, the decision is left to the

user as to which language to use. This decision must not only be

based upon the availability of the languages but also on the computer

environment in which he will be operating and the particular applications

which he is considering. We have chosen to discuss FORTRAN and COBOL be-

cause of their wide availability on all kinds of equipments and PL/I

and SNOBOL because of their particular characteristics and ease in per-

forming information retrieval tasks.

Preliminary Assessment

Until recently, the design of programming languages took no con-

sideration of information retrieval requirements and applications.

As a consequence, advancement of information retrieval methods has

been retarded. In addition, the design of hardware has not fully

considered information retrieval requirements. Many operating systems

for various computers are not designed to handle information retrieval

requirements. Because of time limitations, no discussions of hard-

ware and operating systems are included in this presentation. However,

hardware design must be considered when evaluating programming lan-

guages for use in information retrieval applications. Many of the

-2-

advantages or disadvantages of the various programming languages

which will be considered can be improved or diminished by either

the operating system and/or the computer on which the language

runs. Therefore, there is more involved in deciding which higher

level programming language to use than mere choice of language.

FORTRAN, which is one of the earliest compiler languages to be

developed, was primarily designed for mathematical computation.

FORTRAN is not an easy language to use since it lacks string

ranipulation capabilities, does not handle variable data, and has

limited input and output operations. It is, however, one of the

most widely implemented languages and is available in nearly every

computer center.

SNOBOL is a list-processing language and was designed specifically

for information retrieval application. It is an easy language to learn

but uses a large amount of core storage and requires long production

run time. Although it is used in a large number of installations,

it has nat been generally implemented.

COBOL is a business oriented language but was not designed

specifically for information retrieval activities. Although many

-3.,

information retrieval tasks can be performed with COBOL, it is

awkward and difficult to do so. COBOL structures are rigid, and

string-manipulation and text-editing is difficult to accomplish.

COBOL is widely implemented and should be available in most computer

centers.

PL/I is the newest language to be discussed and incorporates

many of the desiratle features of both FORTRAN and COBOL, as well

as the list-processing languages. PL/I has only been implemented

for the IBM 360 computer system; therefore, at present there is

limited availability. Current experience with PL/I indicates that

the compiler is inefficient with a large amount of overhead in the

programs. Undoubtedly, as time goes on, PL/I compilers will become

more efficient.

FORTRAN

Characteristics of Fortran

FORTRAN is procedures oriented and was intended to compile

programs for solving scientifically oriented problems. Thus,

programs feature:

"Words" which are fixed in length

Arithmetic operations

Array handling

Matrix manipulation

Conditional branching

Algorithmic problem solution

IR Functions

The question to be considerd for information retrieval by

the programmer is whether or not the features listed above will

satisfy his needs in a particular program. These include the

following common functions:

(Ehglish) word matching

Word replacement

String manipulation

Sorting and editing

List processing

Phrase analysis

Syntax analysis

Concept associations

Hierarchical subject arranErements

.6-

Characteristics of an TR System

An analysis of these functions points to a system design

which features:

Character manipulation

Variable length "word"

List manipulation

Extensive input-output

Array capability

Arithmetic capability

Matrix manipulation

Conditional branching

Algorithmic problem solution

Additional Fortran Features

Comparing the desired features of the system with those of

the FORTRAN compiled programs,it is quickly seen that all of the

features of FORTRAN programs are needed, except the fixed "word"

length orientation. Not actually featured by FORTRAN but pro-

grammable are these important characteristics:

Variable length "word"

Character manipulation

List manipulation

Extensive input-output

Character Manipulation

To gain character manipulation and variable word length ability

is a costly technique and wasteful of storage in that an entire

FORTRAN word is used to store a simple alphabetic character. For

example:

CHARACTER MANIPULATION

Adequate Storage
4111111111111611%

NOW !S THE '11ME FOR ALL oil

TEXT (I)

TEXT (2)

CEXT (5)

0
0
0

E117 1 b..=

On b i.sb -...=

1=1:=IEM

0
0
0

READ (5,1) (TEXT (I), I:21,80)
1 FORMAT (80 A l)

Greater efficiency can be attained if FORTRAN is used in a

binary or hexadecimal computer, since every bit configuration re-

presents a valid numerical quantity. In this case, FORTRM

arithmetic can be used to isolate, replace, and generally manipulate

characters. This is shown in the following two illustrations:

CHARACTER (AND BIT) ISOLATION
Packed Hexadecimal Words

iNOW IS THE TIME FOR ALL 1111

TEXT (I)

TEXT (2)

TEXT (3)

e

I I I s i b j T j
E b

o o
o o
o o

NNNN

NNNN

NNNN = TEXT (2) / 16* *4
NNNN = NNNN * 16 **6

0 0 0 0 0 0

CHARACTER (AND BIT) REPLACEMENT -)

Packed Hexadecimal Words
NNNN E 11.9Lint=

J

N (1) = NNNN / 16* 44 6

NCI) = N(I) *16**6

N (2) = NNNN / 16 * * 6

N(2) = N(2) *16* * 6

N(2) = 16* * 4

N(3) = I / 16 * * 2

N (-4) = J / 16 * *6

NNNN c N(I) N(2)14IN(3)+N(4

0 0

Lelemwrileircaursoralres-

LN 0 (=I =140 0 0

Losjr-Tc1 6-6T05-61

,

Supplementary Aids

FORTRAN programs can be used for information retrieval but

only at the cost of decreased efficiency. By using supplementary

aids, the amount of inefficiency can be reduced. The aids can be

specially written subroutines in assenbly language: These are

designed to provide the characteristics missing from FORTRAN, and

can be used with a FORTRAN program when needed.

There are published and unpublished subroutines which are

available, and before writing an original assembly program the

programmer should check the library at his own installation.

The use of SLIP (Symmetric List Processing; see reference

list) can be useful. Subroutines in SLIP are called "primitives"

which can be manipulated to build more meaningful subroutines.

These may be called into FORTRAN programs.

When SLIP is used, character lists are built with sufficient

headers, identification, and pointers to permit extreme flexibility

in manipulations within these lists, their sUblists, sub-sub-lists,

etc. These include sort sequence routines and. push-up and push-down

storage capability.

{
H

E
A

D
E

R
 a

l."

[
v

]
I II

C

1

i [
1 v

C
 H

E
A

D
E

R
 i

[

1W
III

III
IM

M
IIM

M
I

Ji
ll

c

] E

o
o

o
o)

]
[(

JD
, L

L
,R

L
)

(
D

A
T

U
M

)
]

[(
 I

D
,L

L
,R

L
)

(
D

A
T

U
M

)
]

[(
0

0
0

0
o

S
LI

P

I

SNOBOL

Background

SNOBOL is a high-level programming language specifically designed

for manipulating groups ('strings') of characters of varying lengths.

It was developed at Bell Telephone Laboratories (Holmdel, New Jersey)

and has been implemented there in several versions for a variety of

different computer configurations.

This report assumes that the reader is familiar with SNOBOL 3.

SNOBOL 4 is implemented (at present) only for OS/360, requires a

360/40 or larger, and requires about 240 K (bytes) of core. This

may pose difficulties for some potential users.

A version of SNOBOL 3 for OS/360 is now in the final stages of

development by Dr. Luther Haibt, IBM, Yorktown Heights, New York. Un-

like other versions, this SNOBOL 3 is a canpiler, not an intemceter.

It requires something over 128K (i.e., 192E) to implement. This sounds

as if it will be a useful and interesting tool. It has features not

in Bell Laboratories SNOBOL 3, but also lacks certain features of

SNOBOL 3 (i.e., back referencing).

Various versions of SNOBOL have been implemented (as of 1966) for

the following equipment:

IBM 1620
IBM 7040/44
IBM 7094
RCA 601/604
SDS 930-940
CDC 3100

At Columbia, SNOBOL 3 has been used on the IBM 7040-7090, Direct

Coupled System, under IBSYS and IBJOB, as well as on the 7090 alone.

SNOBOL 4 is being used on the 360/50 - 360/75 combination, running

under ASP. SNOBOL 4 is also available for paired 360/62's, running

under HASP.

An interesting SNOBOL variant for OS/360 has been implemented

(in two versions) at MIT.
1

Utes - General

Structurally, SNOBOL is closely related to the Markov algorithm

2
language, this makes it a powerful and general language. The majority

of users employ it in logical, algebraic, and mathematical analyses.

It is used to simulate compiler and other commuter languages, and to

translate from one language to another.

Although considered powerful and general, SNOBOL seems to have been

explicitly designed to deal with problems in information science and

librarianship, sueh as language analysis, bibliographic work, index

analysis, etc.

Operations

The fundamental operations of SNOBOL are:

1) The ability to name strings of characters of varying length

(TITLE 'NAR AND PEACE'; AUTHOR 'TOLSTCY.')

.13.

2) The ability to concatenate named strings;for example, if the

camputer is told to print out: 'THLE OTHOR OF ' TITLE ' IS ' AUTHOR,

it emits: "THE AUTHOR OF WAR AND PEACE IS TOLSTOY."

3) The ability to make patternmatches of strings. (For example,

to answer yes or no to the question whether the string of characters

named AUTHOR matches the literal string of characters 'TOLSTOY.')

SNOBOL permits a number of other logical operations on strings;

one of its most important values is that ttakes care of common prob-

lems in dealing with alphabetic information of varying length. In

other languages their solution can be tedious and lengthy to program,

increasing the chances of logical, syntactic, and punching error, and

making debugging difficult and time-consuming.

The syntax, logic and form of expression of SNOBOL are clear and

readily graspedl but more abstract than those of such languages as

PL/I or COBOL.

SNOPOL operates with the basic assumption that all strings of

characters are of variable length unless told otherwise (valuable and

important from the programmer's point of view).

SNOBOL also permits indirect referencing and has a well-designed

system for permitting the Programmer to write and call his own generalized

subroutines, functions, or procedures.

As is the case with any high-level language, SNOBOL trades

ease of use and flexibility against efficiency of computer time.

Some operations (e.g., concatenation and pattern matching) seem

comparatively quite efficient. Other operations (e.g., character-

by-character sorting) are quite inefficient. Prototype programs

can be written rapidly in SNOBOL with the more inefficient sections

replaced later by mach3._: language. Input/output (at least in

SNOBOL 3) is somewhat clumsy, as it was not really written for and

is not as much used for information science as for other purposes.

(Dr. Haibt's 360 SNOBOL 3, being mainly a compiler, promises to be

(relatively) more efficient than other versions.)

SNOBOL is ideally designed for manipulating natural language

information without resorting to explicit coding of input - com-

bining, comparing, sUbstituting, deleting, correcting, permuting,

etc.

Uses - Specific

At Columbia, a number of programs or program segments for

bibliographic data manipulation for both experimental and production

purposes have been written. A brief description of some of this

work might help the reader to deternine if the language can be of

use to him more than a more detailed description of the language

itself.

-15-

One major area of concern at Columbia has been to develop

language-independent unit operations (as in dhemistry) for in-

formation handling; these can be used for analysis of problems,

flaw-charting, writing procedures in various computer languages,

assisting in language development, and better understanding of

bibliographic and indexing operations in rigorous terms.

Sixty or so of such operations have been witten and tested

in SNOBOL, and about fortyinserted in a procedures or function

library. These include format and layout routines (column for-

mation, page layout, paragraphing, line justification) as well as

routines more directly linked with information science theory.

Two programs for book catalogs have been written - one simple

one by Jessica L. Harris was used for the production of a computer-

based school library catalog (Farmingdale, Long Island - 10,000

titles). The second, by Brian Aveney, is a prototype program,

demonstrating how conventional bibliographic elements used as

access points may be recognized, and conventional entries, in

various types of arrangements, can be produced without explicit

tagging of elements in input.

Another program produces book indexes using human-created en-

tries, but provides by program all subordination and consolidation

of references, repetition of subjects continued from one page to the

next, loage layout, page numbering, running heads, elimination of

widows, capitalization, insertion of most function codes for printing,

and supplying index statistics.

The corrections, additions, and deletions routine used with this

program is completely general in that it may be used with any type of

material and requires no coding or use of line numbers. The index pro-

gram itself is completely general in that line width, page size, and

so on may be defined in terms of the needs of a particular index. A

still more general program, permitting up to four levels of subor-

dination, up to four columns per page, and insertion of pronunciation,

etc., with entries, is now being debugged.

Other examples of programming mhich might be indicative include

experimentation in automatic indexing, programs for three different

types of KWOD indexes, a generalized search routine independent of the

input data format, a tentative general bibliographic program, proto-

type journal (in the style of the H.W. Wilson Reader's Guide), index

programs, frequency count routines, routines for internally tagging

words or parts of entries, and so on.

Also mritten are routines for expanding index entries to permit

combining campatable existing indexes, a quite elaborate nrogram (by

Jessica L. Harris) for the analysis of thesaurus and subject headings,

and some work on directory production problems.

-17-

SNOBOL has allowed all of these programs and routines to be

written within 10 months with never more than three people pro-

gramming and with all of these people working full-time on other

projects. IAD until 10 months ago, too, two of these three had

had no computer programming experience of any kind.

Summary.

SNOBOL, while not an efficient processing language, is easy

to learn and debug, ideally suited to information problems, quite

flexible, very powerful, and likely to grow in use, efficiency,

and importance.

FOOTNOTES

1
Adelbert G. Goff, OS/360 SNOBOL User's Manual, Boston,
June, 1967.

2
Markov, A.A. Theory of Algorithms. Akad. Nauk SSSR, 1954.
(Ehglish edition OTS-USDC 1961) (citation taken from Rosen,
Saul, ed. Projranming S stems and Lan ua es. New York,
McGraw-Hill, 1967, p. 7 .

APPENDIX I

Installe_oL 16

Dr. Hsu, in his Introduction, gives a list of installations using

SNOBOL. Some of these installations may have locally produced manuals

or text materials:

AVCO Corporation
Bellcom, Inc.
Bell - White Sans
The Boing Company
Brigham Young Uhiversity
University of California at Berkeley
University of California at Los Angeles
University of Chicago
Columbia University
University of Florida
FMC Corporation
Grumman Aircraft
Harvard University
Uhiversity of Hawaii
University of Bbuston
IBM France
University of Illinois
Imperial College (U.K.)
Lockheed Missile and Space Company
University of Mhryland
Massachusetts Institute of Technology
University of Michigan
National Security Agency
New lbrk University
Ohio State Uhiversity
Polytechnic Institute of Brooklyn
Princeton University
Purdue University
Service Bureau Corporation
Stanford University
Technology Incorporated
USAF Academy
University of Utah

-20-

University of Washington
Washington State University
Thomas J. Watson Research Center
University of Wisconsin
Yale University

The li.st would doubtless be much longer if it were recompiled

today; including, for example, the Bronx (N.Y.) High School of

Science, the University of Delaware, and many others.*

*
Robert Hsu and Laura Gould, A Linguist's Introduction to SNOBOL,

Honolulu, October 1966.

COBOL

Recommendation: If you have not had any experience with COBOL,

it is recommended that you read McCracken's "A Guide to COBOL

Programming.
"1

Background

Historically, COBOL grew out of the desire to develop a

procedureoriented language that mould be closer to the common

English used in the business world. A second goal was to get a

source language compatible with any computer. Work began on COBOL

in 1959 under the direction of a group of computer experts, many

of whom had worked on somewhat similar "English-Language" systems.

The maintenance and development of the language was established

as one of the functions of a group called the Conference ON Wita

SYstems Languages (CODASYL).

The first formal report defining COBOL was issued in 1960;

that version of COBOL is referred to as COBOL-60. The next year

a more refined version was described, called COBOL-61, and is prob-

ably the most familiar one in use today.

cosoL-61

COWL-61 consists of two aspects of language elements: re-

quired and elective. The original idea was to establish certain

-22-

requirements that a source language must meet to be called COBOL.

The elective aspects of the language was left up to the discretion

of the implementor. In addition, many computer manufacturers have

added their own extensions to COBOL.

COBOL-65

In 1965 the ODDASYL Committee revised COBOL again and came

out with COBOL-65, which is the version being used in most third-

generation equipment. This version also has been accepted by the

USA Standards Institute Committee on Common Programming Languages.2

STRUCTURE

COBOL consists of the folliwing structural divisions

Identification Division

Environment Division

Data Eivision

File Section

Working-Storage Section

Report Section

Procedure Division

Identification Division identifies the source program and the

output of compilation. In addition, any other information such as

date, name of programmer, etc., may be included.

.23.

Environment Division specifies a standard method of expressing

those aspects of a data processing problem that are dependent upon

the physical characteristics of the users particular computer.

Data Division describes the data that the object program is to

accept as input, to manipulate, to create, or to produce as output,

Data to be processed falls into two categories:

1. Data contained in files (input, output, report) and enters

or leaves the internal memory of the computer from a speci-

fied area or areas.

2. Data developed internally and placed into intermediate or

working-storage or placed into specific format for output

reporting purposes.

Procedure Division contains declaratives and. procedures. De-

claratives allow certain procedural changes to be made during pro-

cessing.

EXAMPLE: The USE verb allows us to do special processings at the

beginning of files. Procedures are composed of paragraphs or sections

in which all the operations of the data are performed.

ADVANTAGES OF COBOL FOR INFORMATION RETRIEVAL

1. The tabular representation of Information in the Data

Division (the level structure concept) provides an

excellent capability for retrieving parts of established

files.

2. The capability of sorting and merging within COBOL provides

a powerful tool for organizing files for retrieval of in-

formation.

3. The familiarity of the language provides for easier use

by persons required to use the language.

4. The availabiLity of compilers on many computers make it

especially attractive. (Availability of COBOL files al-

ready in use).

5. The ease of using subroutines for conversational access

via terminals.

6. The advantage of report writing capabilities within the

language.

DISADVANTAGES OF COBOL FOR 111FORMATION RETRIEVAL

1. The language was not designed for Information Retrieval

and thus is often awkward and wordy.

2. The rigid level structure concert does not provide ease

of searching string data (text editing, string manipulation,

etc.).

3. The response time on conversational system is often not as

fast as other languages.

-25..

CURRENT COBOL SYSTEMS FOR INFORMATION RETRIEVAL

Because of COBOL'S file structure and universality, it has been

chosen for specific information systems. An example is the pro-

gramming of the MEDLARS system (Medical Literature Analysis and Re-

trieval System) in COBOL for use on the IBM 7094 at UCLA.

An important reason for choosing COBOL for an on-line retrieval

system is the prior establishment of many files required by the

system in previous batch processing system. This has been helped

by the expansion and use of COBOL in the direct access storage field

over the last few years. Two such systems tied into COBOL that are

currently being used are General Electric's Integrated Data Store

(IDS) and IBM's Index Sequential Access Method (lam).

GE's IDS Retrieval System

Integrated Data Store (IDS) is a new information oriented method

of integrating the operating functions of an information retrieval

system. It allays an efficient system for the storing and retrieval

of data. Some of the specific advantages claimed for IDS include:

1. Shorter time for design and programming of information

systems.

2. Reduced costs in design and programming of information

systems.

-26-

3. Nbre efficient use of disk storage capacity.

4. Reduced record maintenance, updating, and retrieval

time.

The IDS language provides a sj.mplified means for reoord pro-

cessing in the environment of mass random access storage and ex-

tends the range of COBOL. This extension lies basically in four

additional 1E6 instructions: STORE, Rh-TRIEVE, EDDIFY, and. DELETE.

These macro-instructions work in conjunction with, and supplement,

the normal COBOL language in handling files, records or fields.

Such extensions make COBOL into a more powerful retrieval language.

IBM ISAM Retrieval System

This system developed by IBM for use on the 360 series is aimed

at processing files either sequentially or randomly. It basically

operates on complete records and is organized so that rapid sequential

processing is possible. Indexed sequential organization by reference

to indexes associated with the file, makes it possible to quickly

locate individual records for randam processing.

In this method of organization, the programming system has control

over the location of the individual records. The user, therefore, needs

to do little I/0 programming; the programming system does almost all

of it since the characteristics of the file are known.

g

N

,-

,........,

BACKGROUND

In 1963, the Advanced Language Development Committee of the

SHARE FORTRAN project was formed to recommend the successor language

for the currently available FORTRANs. The Committee was made up of three

SHARE members and three IBM representatives. The goals of the Committee

were to provide a language which would encompass more users while still

remaining a useful tool to the engineer.

The Committee found that many parts of the current FORTRAN

language were outmoded (such as overlapped i/0 and processing, and

asynchronous operations), since hardware capabilities had increased

substantially since the development of the language. The Committee

published a report defining a (expanded) FORTRAN system in March,

1964 and in June, 1967, the second SHARE report came out defining data

structure, the report generator, and removing some of the system 360

restrictions. In March 1965 IBM announced its PL/I which contained

major revisions of the expanded FORTRAN defined by the SHARE reports.

The resulting definitions in the PL/I available today contained many

features that mould look familiar to FORTRAN, ALGOL and COBOL pro-

grammers, and several features alien to all three.

The first PL/I compiler available from a manufacturer was Release

I of the P level compiler by IBM for use under OS/360 in 1966, though

-28.

it contained only a subset of the fully defined language and lacked

many of the features that make PL/I a flexible programming language.

In the spring of 1967 Release II of the PL/I containing nearly the

full language, in particular the RECORD oriented input/output cap-

abilities which gave it versatility for file heading in the use of

the direct access devices, but without list processing and asyn-

chronous capabilities. In the summer of 1967 PL/I D level for DOS/

360, the Disk Operating System, was released by IBM as a subset of

the PL/I language. While IBM is the only manufacturer with current

releases of the language, ather implementations are in progress or

have been announced. Digitec is said to be producing a PL/I compiler

for the GE 635/645 and the Sigma 7 computers. RCA is producing a

slibset for its Spectra 70, and UNIVAC is also said to be working on a

PO subset.

general Language Stru_c_ture

PL/I provides p.'_,ertatior.Lcap._.aramaLi bility, which gives it its

modular program structure. Programs are organized into procedures or

blocks and may be made up of one or many blocks. These may be separated

from one another (external) or nested vithin one another (internal).

-29-

Blocks

Blocks provide two important logical functions: 1) they define

the scope of applicability of data variables and of other names so

that the same name may be used for different purposes in different

blocks without ambiguity; and 2) they allow storage for data variables

to be assigned only during an execution of the block and freed for

other uses at the termination of the block.

Certain blocks, called "procedure blocks", may be invoked re-

motely from different places in the program and -provide means to

handle arguments and rturn values.

&le of Procedure Blocks

MAIN: PROCEDURE onIoNs(mAIN);

CALL A;
A: PROCEDURE;

CALL B;

B: PROCEDURE;

CALL C;

END B;

END A;
C: PROCEDURE;

END C;

END MAIN;

D
es

ira
bl

e
P

L/
1

I-
R

 S
ys

te
m

F
ea

tu
re

s

1.
La

rg
e

S
co

pe
 o

fA
pp

lic
ab

ili
ty

2.
F

ix
ed

 a
nd

 V
ar

yi
ng

 L
en

gt
h

C
ha

ra
ct

er
 S

tr
in

g
V

ar
ia

bl
es

3.
C

ha
ra

ct
er

 a
nd

 B
it

S
tr

in
g

M
an

ip
ul

at
io

n

4.
D

yn
am

ic
 S

to
ra

ge
 A

llo
ca

tio
n

5.
C

om
pl

ex
 D

at
a

S
tr

uc
tu

re
S

pe
ci

fic
at

io
n

6.
Li

st
 a

nd
 T

ab
le

 P
ro

ce
ss

in
g

7.
E

xt
en

si
ve

 F
ile

 M
an

ip
ul

at
io

n

8.
F

le
xi

bl
e

In
pu

t a
nd

 O
ut

pu
t f

or
R

ep
or

t G
en

er
at

in
g

9.
A

rit
hm

et
ic

 C
ap

ab
ili

ty

10
.

M
at

rix
 a

nd
 A

rr
ay

 M
an

ip
ul

at
io

n

II.
M

ac
ro

-L
an

gu
ag

e
F

ac
ili

ty

12
,

A
sy

nc
hr

on
ou

s
P

ro
gr

am
E

xe
cu

tio
n

13
.

P
ro

ce
du

re
 O

rie
nt

ed
 L

an
gu

ag
e

Character Strings

PL/I has the ability to describe a wide variety of data types,

including floating point decimal numbers, and floating point binary

numbers of varying precision, fixed decimal and fixed binary numbers

of varying precision and corwlex numeric data. Of particular interest

to information storage and retrieval programming is the ability to de-

fine and manipulate fixed and varying length character strings and

fixed and varying length bit strings. With varying length string

data the length of the string is kept automatically when performing

string lengthening or string shortening functions. Data variables of

the type mentioned above can be grouped by using either arrays,

structures, structures of arrays, or arrays of structures. An array

is composed of elements of the same characteristics and each may have

u1.1 to 32 dimensions in the current IBM implementation of PL/I. The

data structure is a collection of variables and arrays not necessarily

alike in characteristics. Structures may also contain other structures.

Individual items of an array are referred to by "subscripted names";

individual items of a structure are referred to by names that may some-

times have to be aualified to avoid ambiguity.

In PL/I array names and structure names can be used as variables.

Either name may be used as an operand of an array expression or of a

structure expression and it returns an array or a structure result.

-31..

Input/Output Capabilities

PL/I contains two distinct types of I/0 facilities; stream-

oriented input/output and record-oriented input/output.

Stream-Oriented I/0

In stream-oriented input/output the input is considered as one

stream or continuous string of characters, with all data conversion

done on input. Similarly, on output, data conversion is done to con-

vert everything to character strings and the output is one continuous

string. There are three types of string I/O: data directed, list

directed, and edit directed. The first two provide free-form input

and output with little format control, while edit directed input/out-

put is much like FORTRAN type input/output statements with format

specifications. However, unlike FORTRAN, the format specifications

are not rigid and allow variables and expressions to be contained with-

in the format list;, allowing more flexibility than is available with

FORTRAN I/O. Stream input/output of the edit type may also be used on

internal files as well as the conventional external file type.

Record-Oriented I/0

Record-oriented input/output offers both speed and versatility in

file handling and is oriented to reading or writing logical records from

a peripheral unit. This method gives the ability for either sequential

or direct access of records which may be unblocked or blocked. Files

may be opened for input/output or for update and processed with record I/O.

S ecial Features of PL I: ARITHMETIC CAPABILITY

Arithmetic operations and matrix and vector manipulations are

roughly the same as those found in FORTRAN, having approximately the

same routines such as SIN, SUTI etc. available in the PLA library.

The same operators are available and expressions are formed in the

same manner as in FORTRAN. However, variable types contained with-

in the expressions can be any of the data types allawed in PL/I in-

cluding bit and character strings. Conversion will automatically

take place upon evaluation of the expression, although there is a

considerable time and space overhead when writing mixed expressions

such as these.

A
R

IT
H

M
E

T
IC

C
A

P
A

B
IL

IT
Y

1,
V

er
y

si
m

ila
r

to
fo

rt
ra

n
or

 a
lg

ol
2.

/,+
-

dk
,*

*
op

er
at

io
ns

E
X

A
M

P
LE

 :
A

 =
 B

 +
 C

*
D

**
2

)
E

;

3,
A

rr
ay

 o
pe

ra
tio

ns
(a

)
U

p
to

 3
2

di
m

en
si

on
 in

 a
n

ar
ra

y
(b

)
A

 =
 B

 +
 C

M
at

rix
 a

dd
iti

on
(c

)
A

 =
 B

(
1

,*
)

*
C

(
*,

 1
)

V
ec

to
r

m
ul

tip
lic

at
io

n

(d
)

S
im

ila
rly

su
bs

tr
ac

tio
n

,
di

vi
si

on
 la

nd
ex

po
ne

nt
ia

tio
n

ca
n

be
 p

re
fo

rm
ed

(e
)

A
rr

ay
 o

pe
ra

tio
ns

 a
re

pr
ef

or
m

ed
 o

n
on

 e
le

m
en

t
by

 e
le

m
en

t b
as

is

Text Hand1in5 Features

PIVI contains basic but versatile character string manipulation

facilities, including:

- Comparison of character strings.

- A concatenation operator,

- Ektracting and setting substrings of character or

of bit strings, (SUISTR).

- Scanning a character or bit string for certain

character or bit configurations, (INDEX).

- Converting character strings to bit strings and bit

strings to character strings, and assigning bit

configurations to character strings, (UNSPEC).

T
E

X
T

M
A

N
IP

U
LA

T
IO

N

1.
D

E
C

LA
R

E
C

S
T

R
IN

G
C

H
A

R
A

C
T

E
R

 (
le

ng
th

)
V

A
R

Y
IN

G
 ;

2.
S

tr
in

g
M

ov
in

g
A

 =
 B

 ;
3.

II
C

on
ca

te
na

tio
n

A
 =

 B
C

;

4.
m

s
>

I >
I <

9
C

om
pa

ris
on

If
A

 <
 B

T
he

n

5.
S

U
B

S
T

R
E

X
T

R
A

C
T

IN
G

 S
ub

st
rin

gs
 A

 =
 S

U
B

S
T

R
 (

 B
o

no
 m

)
;

S
et

tin
g

S
ub

st
rin

gs
S

U
B

S
T

R
 (

 A
, n

, m
,

)
=

 B
 ;

6.
IN

D
E

X
P

A
T

T
E

R
N

 M
at

ch
in

g
J

=
 IN

D
E

X
 (

 S
T

R
 P

S
T

R
)

;

S
tr

in
g

S
ea

rc
hi

ng
7.

LE
N

G
T

H
C

ur
re

nt
 L

en
gt

h
In

qu
iry

J
es

 L
E

N
G

T
H

 (
 S

T
R

)
;

8.
U

N
S

P
E

C
C

on
ve

rt
in

g
B

it
S

tr
in

g
to

 C
ha

ra
ct

er
 S

tr
in

g
U

N
S

P
E

C
 (

 A
)

=
11

10
01

01
0'

B
 ;

C
on

ve
rt

in
g

C
ha

ra
ct

er
 S

tr
in

g
to

 B
it

S
tr

in
g

B
S

T
R

 n
 U

N
S

P
E

C
 (

 A
)

;

Exwiplc 1

SEARCH: PROCEDURE(STR,INCL);

/* PROCEDURE TO SEARCH FOR SOAETHING INCLOSED IN PARENTHESIS

IN THE CHARACTER STRING, STR, AND EXTRACT IT AND PLACE

IT IN THE CHARACTER STRING INCL */

DECLARE STR CHARACTER(*),

INCL CHARACTER(*);

J = INDEX(STR,t('); /* SEARCH FOR LEFT PARENTHESIS */

K = INDEX(SUBSTR(STR,J), ')'); /* SEARCH FOR RICHT PARENTHESIS

AFTER THE LEFT */

INCL = SUBSTR(STR, JA-1, K-2); /*EXTRACT THE SUBSTRING*/

END SEARCH;

File liandlin

Mbst of PLA file handling capabilities come with RECORD I/0

or a combination of RECORD IA and internal file capabilities of

stream I/O. WI implemented under 4360 provides the ability to

use all access methods available under the operating system which

includes support of both sequential and directly accessed devices

and is able to use variable length record input/output as well.

Sequential and direct access methods, as well as all supported

peripheral devices can read and write variable length records.

Sequential Access

Sequential access may be done with either blocked or unblocked

records and may be buffered or unbuffered. PL/I supports (Index

Sequential Access Method) ISAM, which provides a complete filing

system. Under ISAM, records are identified by alpha-numeric keys

of user-defined length, and indexes to all records in the file are

automatically kept. The file may be accessed directly by these keys

or sequentially starting from any point in the file. Records may be

added or deleted and updated in either sequential or direct modes of

processing. Recoids are placed in the file corresponding to the

collating sequence of their key. Under direct access methods, there

are three principle methods of referring to records in the direct

access file:

-35-

1) the relative record number;

2) the relative record number plus a key which

may be alpha-numeric;

3) relative track number plus a key which may

be alpha-numeric;

In 2 & 3 duplicate keys may be added to a file by specifying that

the record be placed in the first available space after the relative

record number if a record is already written in that spot. Similarly

extended search option is also available for the so-placed records.

Updating of files is available in a direct mode of access oni,y.

Storae Control

Computer storage for any data variable in a PLA program may be

assigned statically for the entire execution of the program or

dynamically during execution. Dynamic storage allocation within the

program permits more efficient use of variable size data areas. Two

classes of automatic storage are available in PLA: automatic and

controlled. When the variable has the controlled storage attributes,

the programmer may allocate or free storage f6;that variable at any

time. Storage for the variable with automatic storage attribute is

allocated upon entry to a block and freed upon exit.

-36-

D
Y

N
A

M
IC

S
T

O
R

A
G

E
A

LL
O

C
A

T
IO

N

1.
P

ro
gr

am
m

er
 c

on
tr

ol
le

d
al

lo
ca

tio
n

of
st

or
ag

e
fo

r
va

ria
bl

es
.

U
N

U
S

E
D

C
O

R
E

P
L/

1
P

R
O

G
R

A
M

r-
-C

O
M

P
U

T
E

R
C

O
R

E

S
T

O
R

A
G

E

D
E

C
LA

R
E

D
IC

T
IO

N
A

R
Y

da
ta

 a
ttr

ib
ut

es
C

O
N

T
R

O
LL

E
D

F
O

U
N

D
-L

IS
T

da
ta

 a
ttr

ib
ut

es
C

O
N

T
R

O
LL

E
D

,

A
LL

O
C

A
T

E
,

D
IC

T
IO

N
A

R
Y

 7
,

pr
oc

es
s

w
ith

di
ct

io
na

ry

F
R

E
E

D
eI

C
T

IO
N

A
R

Y

A
LL

O
C

A
T

E
,

F
O

U
N

D
-L

IS
T

 ;

pr
oc

es
s

w
ith

fo
un

d-
lis

t

F
R

E
E

F
bU

N
D

-L
IS

T
;

Interrt.Tt Handling

PL/I handles interrupts generated by system or user generated

conditions such as data conversion errors, file conditions, page

conditions, I/0 errors, etc. The interrupt handl4ng routine gives

the programmer the opportunity to either correct the condition that

caused ;:ile interrupt, or to do processing prior to closing of the

program. It also gives him the ability to supercede sL-stem defined

action for such cases.

List Processing_

PL/I provides in its definition primitive facilities for list

processing, although they have not been implemented yet. They are

said to be similar to the facilities offered by L6
.

Asynchronous Operations and Tasks

PL/I allows tasks to be created by the programmer and provides

facilities for synchronizing, testing for completion,and assigning

priorities. By using the asynchronous operations which are to be

implemented in Release III of the PL/I compiler, programmers can use

computer facilities which can operate simultaneously (such as input/

output channels and multiple central processing units). Programs

-37-

Exanple 3

Example of overlapping processing with input/output activities.

PROCEDURE;

DECLARE ONE EVENT, /* ONE AND TWO ARE DECLARED AS */

TWO EVENT; /* EVENT VARIABLES */

READ FILE (FILM) INTO (nAINREC) KEY (KEY#1).EVENT(ONE);
READ FILE (FILM) INTO (SUBREC) KEY (KEY#2) EVENT(TWO);

/* DO PROCESSING DURING THE INPUT TIME*/

a

WAIT(ONE); /* WAIT FOR COMPLETION OF THE FIRST READ */

WAIT(TUO); /* WAIT FOR CO:APLETION OF THE SECOND READ */

END A;

may be written in which input/output units initiate or complete

transmission at unpredictable times such as those found in disc

operations and terminal operations and which effectiv-Ay overlep

these operations.

Compile Time Facility

The compile time facilities are a macro-language facility that

can be used to perform several functions. These include:

1) modification of a source program to change

variable names;

2) inclusion of strings of text into the source

program where the strings of text reside in

the user or systen library;

3) conditional compilation of sections of the

source program;

4) generation of in-line code.

Limitations

1

The current implem4tation of PL/I by IBM contains certain over-

heads in terms of speed and total program size. The large size of

PVI programs is almost directly due to the extensive use of library

-38..

may be written in whidh input/output units initiate or complete

transmission at unpredictable times such as those found in disc

operations and terminal operations and which effectively overlvp

these operations.

CoNik.L2ELFAILUAL

The compile time facilities are a macro-language facility that

can be used to rerform several functions. These include:

1) modification of a source program to change

variable names;

2) inclusion of strings of text into the source

program where the strings of text reside in

the user or system library;

3) conditional compilation of sections of the

source program;

4) generation of in-line code.

Limitations

1

The current impleme
11
tation of PL/I by IBM contains certain over-

heads in terms of speed and total program size. The large size of

PL/I programs is almost directly due to the extensive use of library

-38-

modules by the program such as those for errormonitoring, type

conversion, file opening and closing and many others. Speed of

execution is greatly affected by techniques used to accomplish

a given job, or by basic construction of the program (e.g., ex-

tensive use of procedures or of control storage). A list of pit-

falls for the programmer to avoid which adversely affect the speed

of execution of a program can be found in Attachment 1 and also in

the PL/I Programmer's Guide IBM Form C28-6594-1. Release 3 of PL/I

from IBM has been developed to reduce overhead connected with many

of these areas. It may also offer the asyndhronous and list pro-

cessing capabilities and is to be released in the 3rd quarter of

1967.

FORTRAN

Some helpful reading material:

1. G. Salton, "Data Manipulation and Programming Problens in Automatic

Information Retrieval." PP 204-210, V9, N3, March 1966, Communi-

cations of the ACM.

2. Cbarles T. Meadow "The Analysis of Information Systems." John

Wiley and Sons, Inc. New York, 1967.

3. Charles Philip Lecht "The Programmer's FORTRAN II and IV.: McGraw-

Hill Book Company. New York, 1966.

4. J. Weizenbaum "Symmetric List Processor" PP 524-544, V6, No. 9,

September 1963, Communications of the ACM.

5. R. M. Lee "A Short Course in FORTRAN IV Programming" McGraw-Hill

Book Company, New York, 1967 (This is one of many FORTRAN primers

available).

ANNOTATED BIBLIOGRAPHY

Desautels, E.J., and Douglas K. Smith. "An Introduction to the

String Processing Language SNOBOL." in Rosen, Saul, ed. Pro-

gramming Systems and Languages. New York, McGraw-Hill, 1967.
(McGraw-Hill Computer Science Series) pp. 419-454,

A capplete general manual for SNOBOL 3. The
Rosen book in which it appears is quite use-
ful for the comparison of languages and for
much incidental information.

Farber, D.J., R.E. Griswold, and I.P. Polonsky.
"SNOBOL, A String Manipulation Language." Journal of the
Association for Computing Machinery, vol. 11, no. 2, January,

1964, pp. 21-30.

Covers the initial version of the language,
SNOBOL, and includes a discussion of the
desirable aspects of a language for string
manipulation.

Farber, D.J., R.E. Griswold, and I.P. Pblonsky.
"SNOBOL 3 Programming Language." Bell System Technical Journal,

vol. SLV, no. 6, July-August 1966, pp. 895-944.

Forte, Allen. SNOBOL 3 Primer: an introduction to the Comouter

Programming Language. Boston, MIT Press, 1967.-7375 raper7.

Goff, Adelbert G. 03/360 SNOBOL User's Manual. Boston, Brown

University, June, 1967 (mimeo).

A variant for 03/360 which has been implemented
in two versions at MIT.

Griswold, R.E., J.F. Pbage, and I.P. Polonsky. Preliminary Report

on the SNOBOL 4 Programming Language. Holmdel, N.J., Bell
Telephone Laboratories, Nbvtmber 22, 1967. (S4D4) (offset)

Hsu, Robert, and Laura Gould. A Linguist's Introduation to SNOBOL.
Honolulu, Pacific and Asian Linguistics Institute, October, 1966.
(mimeo).

Covers only the most basic and important
features of SNOBOL 3. Possible users Should
not be deterred by the fact that the examples
are based on linguistic comparison of Proto-
Oceanic and Trukese.

Simon, A.H. and D.A. Walters. RCA SNOBOL Programmers Manual.
Princeton, N.J., RCA Laboratories, December, 1964.

Accordii:g to Desautels, this version has some useful extensions
of the language not in Bell Laboratories SNOBOL 3.

Wilson, Da7id L. SNOBOL3aListP Lcessinz
Documenz no. 1. .02 1 6 20 General Program

11, 1966.
For the IBM 1620. This version

Lan e a L. IBM
Library, November,

is slow

and has no provision for programmer defined
functions.

BIBLIOGRAPHY

BOOKS: COBOL

COBOL 1961 REVISED SPECIFICATIONS FOR. A COMMON BUSINESS-ORIENTED
LANGUAGE, Washington D.C., U.S. Government Printing Office, 1961.

General Electric, GE 400 SERIES COBOL LANGUAGE, Phoenix, GE
Computer Department, 1965.

General Electric, INTRODUCTION TO INTEGRATED DATA STORE, Phoenix,
GE Computer Department, 1965.

IBM, IBM SYSTEM/360 OPERATING SYSTEM COBOL LANGUAGE, New York,
IBM Programming Systems Publications, 1967.

iBM, IBM SYSTEM/360 OS COBOL (P) PROGRAMMER'S GUIDE, New York,
IBM Programming Systems Publications, 1967.

McCracken, Daniel D., A GUIDE TO PROGRAMMING, New York, John Wiley &
Sons, Inc., 1963.

COBOL INFORMATION BULLETIN 49, New York, United States of America
Standards Institute, 1967.

PERIODICALS: COBOL

"A Detailed Description of COBOL," Annual Review in Automatic
Programming, Volume 2, 1961, P. 197.

"A Critical Discussion of COBOL," Annual Review in Automatic
Programming, Volume 2, 1961, p. 293.

"General Views on COBOL," Annual Review in Automatic Programming,
Volume 2, 1961, p. 345.

"A Critical Appraisal of COBOL," The Computer Bulletin, Volume 4,
1961.

"Why COBOL," Communications of the Association for Computing
Machinery, Volume 5, 1962, p. 236.

BIBLiOnRAPHY PL/I

(1) Irwin, Larry. Implementing Phrase Structure Productions in PL/I,

Comm. ACM 10, 7 (July, 1967) 424.

(2) Lawson, Harold W. Jr. PL/I List Processing. Comm. ACA 10, 6 (Juae

1967) 358, 367

(3) PL/I: Language Specifications. IBM Corp. C28-6571-4

(4) Mitchell, R. W.; Christensen, Carlos; Myszewski, Mathew; Sampson,

Carol. Ah Informal PL/I Roundtable, Collection One. Massachusetts

Com-eater Associates, lnc. Technical Report CA-670410511, April 5,

1967.

(5) Salton, G. Data Manipulation and Programming Problems in Auto-
matic Information Retrieval. Comm. ACM 9, 3

March 1966 204, 210.

(6) Raphael, B. Survey of Compute.2 Languages for Symbolic and Algebraic
Manipulations. DDC, AD-649401 (March 1967)

SHARE Advanced Language Committee, Report of the. (March 1, 1964.)

Revised Edition,

Special Interest Group of Programming Languages (SIGPLAN) of the
Los Angeles Chapter of the Association for Computing Machinery.

PL/I Bulletin No. 3.

Weinberg, Cerald M., PL/I Pyoltrfunninct. primer. McGraw Hill Book Co.,

New York, 196. 273 pages.

(10) Weiss, Eric A.,
116 pages.

The FL/I Conyerter. McGraw Hill Book Co., 1965

